
C# Coding Standards and Best Programming Practices

By

http://www.dotnetspider.com

http://www.dotnetspider.com/tutorials/BestPractices.aspx

http://www.dotnetspider.com/

1. Author..3
2. License, Copyrights and Disclaimer..3
3. Revision History..3
4. Introduction..3
5. Purpose of coding standards and best practices...3
6. How to follow the standards across the team..4
7. Naming Conventions and Standards..4
8. Indentation and Spacing..7
9. Good Programming practices..10
10. Architecture...15
11. ASP.NET..16
12. Comments..16
13. Exception Handling...17

1. Author

This document is prepared by the dotnetspider team. Latest version of this document can be
downloaded from http://www.dotnetspider.com/tutorials/BestPractices.aspx. Please post your
comments and feedback about this document in the above url.

Most of the information in this document is compiled from the coding standards and best
practices published in various articles in dotnetspider.com. Also, we referred to the guidelines
published by Microsoft and various other sources.

2. License, Copyrights and Disclaimer

You are permitted to use and distribute this document for any non commercial purpose as long as
you retain this license & copyrights information.

This document is provided on “As-Is” basis. The author of this document will not be responsible
for any kind of loss for you due to any inaccurate information provided in this document.

3. Revision History

If you are editing this document, you are required to fill the revision history with your name and
time stamp so that anybody can easily distinguish your updates from the original author.

Sl# Date Changed By Description
1

4. Introduction

Anybody can write code. With a few months of programming experience, you can write 'working
applications'. Making it work is easy, but doing it the right way requires more work, than just
making it work.

Believe it, majority of the programmers write 'working code', but not ‘good code'. Writing 'good
code' is an art and you must learn and practice it.

Everyone may have different definitions for the term ‘good code’. In my definition, the following
are the characteristics of good code.

• Reliable
• Maintainable
• Efficient

Most of the developers are inclined towards writing code for higher performance, compromising
reliability and maintainability. But considering the long term ROI (Return On Investment),
efficiency and performance comes below reliability and maintainability. If your code is not reliable
and maintainable, you (and your company) will be spending lot of time to identify issues, trying to
understand code etc throughout the life of your application.

5. Purpose of coding standards and best practices

http://www.dotnetspider.com/tutorials/BestPractices.aspx

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconNETFrameworkDesignGuidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconNETFrameworkDesignGuidelines.asp
http://www.dotnetspider.com/tutorials/BestPractices.aspx
http://www.dotnetspider.com/

To develop reliable and maintainable applications, you must follow coding standards and best practices.

The naming conventions, coding standards and best practices described in this document are compiled from
our own experience and by referring to various Microsoft and non Microsoft guidelines.

There are several standards exists in the programming industry. None of them are wrong or bad and you
may follow any of them. What is more important is, selecting one standard approach and ensuring that
everyone is following it.

6. How to follow the standards across the team

If you have a team of different skills and tastes, you are going to have a tough time convincing
everyone to follow the same standards. The best approach is to have a team meeting and
developing your own standards document. You may use this document as a template to prepare
your own document.

Distribute a copy of this document (or your own coding standard document) well ahead of the
coding standards meeting. All members should come to the meeting prepared to discuss pros
and cons of the various points in the document. Make sure you have a manager present in the
meeting to resolve conflicts.

Discuss all points in the document. Everyone may have a different opinion about each point, but
at the end of the discussion, all members must agree upon the standard you are going to follow.
Prepare a new standards document with appropriate changes based on the suggestions from all
of the team members. Print copies of it and post it in all workstations.

After you start the development, you must schedule code review meetings to ensure that
everyone is following the rules. 3 types of code reviews are recommended:

1. Peer review – another team member review the code to ensure that the code follows the
coding standards and meets requirements. This level of review can include some unit
testing also. Every file in the project must go through this process.

2. Architect review – the architect of the team must review the core modules of the project
to ensure that they adhere to the design and there is no “big” mistakes that can affect the
project in the long run.

3. Group review – randomly select one or more files and conduct a group review once in a
week. Distribute a printed copy of the files to all team members 30 minutes before the
meeting. Let them read and come up with points for discussion. In the group review
meeting, use a projector to display the file content in the screen. Go through every
sections of the code and let every member give their suggestions on how could that piece
of code can be written in a better way. (Don’t forget to appreciate the developer for the
good work and also make sure he does not get offended by the “group attack”!)

7. Naming Conventions and Standards

Note : Note :

The terms The terms Pascal CasingPascal Casing and and Camel CasingCamel Casing are used throughout this document. are used throughout this document.

Pascal Casing Pascal Casing - First character of all words are Upper Case and other characters are lower case. - First character of all words are Upper Case and other characters are lower case.

Example: Example: BBackackCColorolor

Camel Casing - Camel Casing - First character of all words, First character of all words, except the first wordexcept the first word are Upper Case and other characters are are Upper Case and other characters are
lower case.lower case.

Example: Example: bbackackCColorolor

1. Use Pascal casing for Class names

public class HelloWorld
{

...
}

2. Use Pascal casing for Method names

void SayHello(string name)
{

...
}

3. Use Camel casing for variables and method parameters

int totalCount = 0;
void SayHello(string name)
{

string fullMessage = "Hello " + name;
...

}

4. Use the prefix “I” with Camel Casing for interfaces (Example: IEntity)

5. Do not use Hungarian notation to name variables.

In earlier days most of the programmers liked it - having the data type as a prefix for the variable
name and using m_ as prefix for member variables. Eg:

string m_sName;
int nAge;

However, in .NET coding standards, this is not recommended. Usage of data type and m_ to represent
member variables should not be used. All variables should use camel casing.

Some programmers still prefer to use the prefix Some programmers still prefer to use the prefix m_m_ to represent member variables, since there is no other to represent member variables, since there is no other
easy way to identify a member variable.easy way to identify a member variable.

6. Use Meaningful, descriptive words to name variables. Do not use abbreviations.

Good:

string address
int salary

Not Good:

http://www.dotnetspider.com/tutorials/BestPractices.aspx

string nam
string addr
int sal

7. Do not use single character variable names like i, n, s etc. Use names like index,
temp

One exception in this case would be variables used for iterations in loops:

for (int i = 0; i < count; i++)
{

...
}

If the variable is used only as a counter for iteration and is not used anywhere else in the loop, many people
still like to use a single char variable (i) instead of inventing a different suitable name.

8. Do not use underscores (_) for local variable names.

9. All member variables must be prefixed with underscore (_) so that they can be identified
from other local variables.

10. Do not use variable names that resemble keywords.

11. Prefix boolean variables, properties and methods with “is” or similar prefixes.

Ex: private bool _isFinished

12. Namespace names should follow the standard pattern

<company name>.<product name>.<top level module>.<bottom level module>

13. Use appropriate prefix for the UI elements so that you can identify them from the rest of the
variables.

There are 2 different approaches recommended here.

a. Use a common prefix (ui_) for all UI elements. This will help you group all of the
UI elements together and easy to access all of them from the intellisense.

b. Use appropriate prefix for each of the ui element. A brief list is given below. Since
.NET has given several controls, you may have to arrive at a complete list of
standard prefixes for each of the controls (including third party controls) you are
using.

ControlControl PrefixPrefix

LabelLabel lbllbl

TextBoxTextBox txttxt

DataGridDataGrid dtgdtg

ButtonButton btnbtn

ImageButtonImageButton imbimb

HyperlinkHyperlink hlkhlk

DropDownListDropDownList ddlddl

ListBoxListBox lstlst

DataListDataList dtldtl

RepeaterRepeater reprep

CheckboxCheckbox chkchk

CheckBoxListCheckBoxList cblcbl

RadioButtonRadioButton rdordo

RadioButtonListRadioButtonList rblrbl

ImageImage imgimg

PanelPanel pnlpnl

PlaceHolderPlaceHolder phdphd

TableTable tbltbl

ValidatorsValidators valval

14. File name should match with class name.

For example, for the class HelloWorld, the file name should be helloworld.cs (or, helloworld.vb)

15. Use Pascal Case for file names.

8. Indentation and Spacing

1. Use TAB for indentation. Do not use SPACES. Define the Tab size as 4.

2. Comments should be in the same level as the code (use the same level of indentation).

Good:

// Format a message and display

string fullMessage = "Hello " + name;
DateTime currentTime = DateTime.Now;
string message = fullMessage + ", the time is : " +
currentTime.ToShortTimeString();
MessageBox.Show (message);

http://www.dotnetspider.com/tutorials/BestPractices.aspx

Not Good:

// Format a message and display
string fullMessage = "Hello " + name;
DateTime currentTime = DateTime.Now;
string message = fullMessage + ", the time is : " +
currentTime.ToShortTimeString();
MessageBox.Show (message);

3. Curly braces ({}) should be in the same level as the code outside the braces.

4. Use one blank line to separate logical groups of code.

Good:
bool SayHello (string name)
{

string fullMessage = "Hello " + name;
DateTime currentTime = DateTime.Now;

string message = fullMessage + ", the time is : " +
currentTime.ToShortTimeString();

MessageBox.Show (message);

if (...)
{

// Do something
// ...

return false;
}

return true;
}

Not Good:

bool SayHello (string name)
{

string fullMessage = "Hello " + name;
DateTime currentTime = DateTime.Now;
string message = fullMessage + ", the time is : " +

currentTime.ToShortTimeString();
MessageBox.Show (message);
if (...)
{

// Do something
// ...
return false;

}
return true;

}

5. There should be one and only one single blank line between each method inside the class.

6. The curly braces should be on a separate line and not in the same line as if, for etc.

Good:
if (...)
{

// Do something
}

Not Good:

if (...) {
// Do something

}

7. Use a single space before and after each operator and brackets.

Good:
if (showResult == true)
{

for (int i = 0; i < 10; i++)
{

//
}

}

Not Good:

if(showResult==true)
{

for(int i= 0;i<10;i++)
{

//
}

}

8. Use #region to group related pieces of code together. If you use proper grouping using
#region, the page should like this when all definitions are collapsed.

http://www.dotnetspider.com/tutorials/BestPractices.aspx

9. Keep private member variables, properties and methods in the top of the file and public
members in the bottom.

9. Good Programming practices

1. Avoid writing very long methods. A method should typically have 1~25 lines of code. If a
method has more than 25 lines of code, you must consider re factoring into separate
methods.

2. Method name should tell what it does. Do not use mis-leading names. If the method name is
obvious, there is no need of documentation explaining what the method does.

Good:
void SavePhoneNumber (string phoneNumber)
{

// Save the phone number.
}

Not Good:

// This method will save the phone number.
void SaveDetails (string phoneNumber)
{

// Save the phone number.
}

3. A method should do only 'one job'. Do not combine more than one job in a single method,
even if those jobs are very small.

Good:
// Save the address.
SaveAddress (address);

// Send an email to the supervisor to inform that the address is updated.
SendEmail (address, email);

void SaveAddress (string address)
{

// Save the address.
// ...

}

void SendEmail (string address, string email)
{

// Send an email to inform the supervisor that the address is
changed.

// ...
}

Not Good:

// Save address and send an email to the supervisor to inform that
// the address is updated.
SaveAddress (address, email);

void SaveAddress (string address, string email)
{

// Job 1.
// Save the address.
// ...

// Job 2.
// Send an email to inform the supervisor that the address is

changed.
// ...

}

4. Use the c# or VB.NET specific types (aliases), rather than the types defined in System
namespace.

int age; (not Int16)
string name; (not String)
object contactInfo; (not Object)

Some developers prefer to use types in Common Type System than language specific aliases.Some developers prefer to use types in Common Type System than language specific aliases.

5. Always watch for unexpected values. For example, if you are using a parameter with 2 possible values,
never assume that if one is not matching then the only possibility is the other value.

Good:

If (memberType == eMemberTypes.Registered)
{

// Registered user… do something…
}
else if (memberType == eMemberTypes.Guest)
{

// Guest user... do something…
}
else
{

// Un expected user type. Throw an exception
throw new Exception (“Un expected value “ +

memberType.ToString() + “’.”)

http://www.dotnetspider.com/tutorials/BestPractices.aspx

// If we introduce a new user type in future, we can easily
find

// the problem here.
}

Not Good:

If (memberType == eMemberTypes.Registered)
{

// Registered user… do something…
}
else
{

// Guest user... do something…

// If we introduce another user type in future, this code will
// fail and will not be noticed.

}

6. Do not hardcode numbers. Use constants instead. Declare constant in the top of the file and use it
in your code.

However, using constants are also not recommended. You should use the constants in the config file or
database so that you can change it later. Declare them as constants only if you are sure this value will
never need to be changed.

7. Do not hardcode strings. Use resource files.

8. Convert strings to lowercase or upper case before comparing. This will ensure the string will
match even if the string being compared has a different case.

if (name.ToLower() == “john”)
{

 //…
}

9. Use String.Empty instead of “”

Good:

If (name == String.Empty)
{

// do something
}

Not Good:

If (name == “”)
{

// do something
}

10. Avoid using member variables. Declare local variables wherever necessary and pass it to
other methods instead of sharing a member variable between methods. If you share a
member variable between methods, it will be difficult to track which method changed the
value and when.

11. Use enum wherever required. Do not use numbers or strings to indicate discrete values.

Good:
enum MailType
{

Html,
PlainText,
Attachment

}

void SendMail (string message, MailType mailType)
{

switch (mailType)
{

case MailType.Html:
// Do something
break;

case MailType.PlainText:
// Do something
break;

case MailType.Attachment:
// Do something
break;

default:
// Do something
break;

}
}

Not Good:

void SendMail (string message, string mailType)
{

switch (mailType)
{

case "Html":
// Do something
break;

case "PlainText":
// Do something
break;

case "Attachment":
// Do something
break;

default:
// Do something
break;

}
}

12. Do not make the member variables public or protected. Keep them private and expose
public/protected Properties.

13. The event handler should not contain the code to perform the required action. Rather call
another method from the event handler.

14. Do not programmatically click a button to execute the same action you have written in the
button click event. Rather, call the same method which is called by the button click event
handler.

15. Never hardcode a path or drive name in code. Get the application path programmatically and
use relative path.

http://www.dotnetspider.com/tutorials/BestPractices.aspx

16. Never assume that your code will run from drive "C:". You may never know, some users may
run it from network or from a "Z:".

17. In the application start up, do some kind of "self check" and ensure all required files and
dependancies are available in the expected locations. Check for database connection in start
up, if required. Give a friendly message to the user in case of any problems.

18. If the required configuration file is not found, application should be able to create one with
default values.

19. If a wrong value found in the configuration file, application should throw an error or give a
message and also should tell the user what are the correct values.

20. Error messages should help the user to solve the problem. Never give error messages like
"Error in Application", "There is an error" etc. Instead give specific messages like "Failed to
update database. Please make sure the login id and password are correct."

21. When displaying error messages, in addition to telling what is wrong, the message should
also tell what should the user do to solve the problem. Instead of message like "Failed to
update database.", suggest what should the user do: "Failed to update database. Please
make sure the login id and password are correct."

22. Show short and friendly message to the user. But log the actual error with all possible
information. This will help a lot in diagnosing problems.

23. Do not have more than one class in a single file.

24. Have your own templates for each of the file types in Visual Studio. You can include your
company name, copy right information etc in the template. You can view or edit the Visual
Studio file templates in the folder C:\Program Files\Microsoft Visual Studio
8\Common7\IDE\ItemTemplatesCache\CSharp\1033. (This folder has the templates for C#,
but you can easily find the corresponding folders or any other language)

25. Avoid having very large files. If a single file has more than 1000 lines of code, it is a good
candidate for refactoring. Split them logically into two or more classes.

26. Avoid public methods and properties, unless they really need to be accessed from outside the
class. Use “internal” if they are accessed only within the same assembly.

27. Avoid passing too many parameters to a method. If you have more than 4~5 parameters, it is
a good candidate to define a class or structure.

28. If you have a method returning a collection, return an empty collection instead of null, if you
have no data to return. For example, if you have a method returning an ArrayList, always
return a valid ArrayList. If you have no items to return, then return a valid ArrayList with 0
items. This will make it easy for the calling application to just check for the “count” rather than
doing an additional check for “null”.

29.Use the AssemblyInfo file to fill information like version number, description, company name,
copyright notice etc.

30. Logically organize all your files within appropriate folders. Use 2 level folder hierarchies. You
can have up to 10 folders in the root folder and each folder can have up to 5 sub folders. If
you have too many folders than cannot be accommodated with the above mentioned 2 level
hierarchy, you may need re factoring into multiple assemblies.

16. Make sure you have a good logging class which can be configured to log errors, warning
or traces. If you configure to log errors, it should only log errors. But if you configure to log
traces, it should record all (errors, warnings and trace). Your log class should be written
such a way that in future you can change it easily to log to Windows Event Log, SQL
Server, or Email to administrator or to a File etc without any change in any other part of
the application. Use the log class extensively throughout the code to record errors,
warning and even trace messages that can help you trouble shoot a problem.

17. If you are opening database connections, sockets, file stream etc, always close them in
the finally block. This will ensure that even if an exception occurs after opening the
connection, it will be safely closed in the finally block.

18. Declare variables as close as possible to where it is first used. Use one variable
declaration per line.

19. Use StringBuilder class instead of String when you have to manipulate string objects in a
loop. The String object works in weird way in .NET. Each time you append a string, it is
actually discarding the old string object and recreating a new object, which is a relatively
expensive operations.

Consider the following example:

public string ComposeMessage (string[] lines)
{
 string message = String.Empty;

 for (int i = 0; i < lines.Length; i++)
 {
 message += lines [i];
 }

 return message;
}

In the above example, it may look like we are just appending to the string object ‘message’.
But what is happening in reality is, the string object is discarded in each iteration and
recreated and appending the line to it.

If your loop has several iterations, then it is a good idea to use StringBuilder class instead of
String object.

See the example where the String object is replaced with StringBuilder.

public string ComposeMessage (string[] lines)
{
 StringBuilder message = new StringBuilder();

 for (int i = 0; i < lines.Length; i++)
 {
 message.Append(lines[i]);
 }

 return message.ToString();
}

10.Architecture

http://www.dotnetspider.com/tutorials/BestPractices.aspx

1. Always use multi layer (N-Tier) architecture.

2. Never access database from the UI pages. Always have a data layer class which performs all
the database related tasks. This will help you support or migrate to another database back
end easily.

3. Use try-catch in your data layer to catch all database exceptions. This exception handler
should record all exceptions from the database. The details recorded should include the
name of the command being executed, stored proc name, parameters, connection string
used etc. After recording the exception, it could be re thrown so that another layer in the
application can catch it and take appropriate action.

4. Separate your application into multiple assemblies. Group all independent utility classes into
a separate class library. All your database related files can be in another class library.

11. ASP.NET

1. Do not use session variables throughout the code. Use session variables only within the
classes and expose methods to access the value stored in the session variables. A class
can access the session using System.Web.HttpCOntext.Current.Session

2. Do not store large objects in session. Storing large objects in session may consume lot of
server memory depending on the number of users.

3. Always use style sheet to control the look and feel of the pages. Never specify font name
and font size in any of the pages. Use appropriate style class. This will help you to
change the UI of your application easily in future. Also, if you like to support customizing
the UI for each customer, it is just a matter of developing another style sheet for them

12.Comments

Good and meaningful comments make code more maintainable. However,

1. Do not write comments for every line of code and every variable declared.

2. Use // or /// for comments. Avoid using /* … */

3. Write comments wherever required. But good readable code will require very less comments.
If all variables and method names are meaningful, that would make the code very readable
and will not need many comments.

4. Do not write comments if the code is easily understandable without comment. The drawback
of having lot of comments is, if you change the code and forget to change the comment, it will
lead to more confusion.

5. Fewer lines of comments will make the code more elegant. But if the code is not
clean/readable and there are less comments, that is worse.

6. If you have to use some complex or weird logic for any reason, document it very well with
sufficient comments.

7. If you initialize a numeric variable to a special number other than 0, -1 etc, document the
reason for choosing that value.

8. The bottom line is, write clean, readable code such a way that it doesn't need any comments

to understand.

9. Perform spelling check on comments and also make sure proper grammar and punctuation is
used.

13.Exception Handling

1. Never do a 'catch exception and do nothing'. If you hide an exception, you will never know if
the exception happened or not. Lot of developers uses this handy method to ignore non
significant errors. You should always try to avoid exceptions by checking all the error
conditions programmatically. In any case, catching an exception and doing nothing is not
allowed. In the worst case, you should log the exception and proceed.

2. In case of exceptions, give a friendly message to the user, but log the actual error with all
possible details about the error, including the time it occurred, method and class name etc.

3. Always catch only the specific exception, not generic exception.

Good:

void ReadFromFile (string fileName)
{

try
{

// read from file.
}
catch (FileIOException ex)
{

// log error.
// re-throw exception depending on your case.
throw;

}
}

Not Good:

void ReadFromFile (string fileName)
{
 try
 {
 // read from file.
 }
 catch (Exception ex)
 {
 // Catching general exception is bad... we will never know whether
 // it was a file error or some other error.
 // Here you are hiding an exception.
 // In this case no one will ever know that an exception happened.

 return "";
 }
}

4. No need to catch the general exception in all your methods. Leave it open and let the application crash.
This will help you find most of the errors during development cycle. You can have an application level
(thread level) error handler where you can handle all general exceptions. In case of an 'unexpected
general error', this error handler should catch the exception and should log the error in addition to giving

http://www.dotnetspider.com/tutorials/BestPractices.aspx

a friendly message to the user before closing the application, or allowing the user to 'ignore and
proceed'.

5. When you re throw an exception, use the throw statement without specifying the original exception.
This way, the original call stack is preserved.

Good:

catch
{

// do whatever you want to handle the exception

throw;
}

Not Good:

catch (Exception ex)
{

// do whatever you want to handle the exception

throw ex;
}

6. Do not write try-catch in all your methods. Use it only if there is a possibility that a specific exception
may occur and it cannot be prevented by any other means. For example, if you want to insert a record if
it does not already exists in database, you should try to select record using the key. Some developers
try to insert a record without checking if it already exists. If an exception occurs, they will assume that
the record already exists. This is strictly not allowed. You should always explicitly check for errors rather
than waiting for exceptions to occur. On the other hand, you should always use exception handlers
while you communicate with external systems like network, hardware devices etc. Such systems are
subject to failure anytime and error checking is not usually reliable. In those cases, you should use
exception handlers and try to recover from error.

7. Do not write very large try-catch blocks. If required, write separate try-catch for each task you perform
and enclose only the specific piece of code inside the try-catch. This will help you find which piece of
code generated the exception and you can give specific error message to the user.

8. Write your own custom exception classes if required in your application. Do not derive your custom
exceptions from the base class SystemException. Instead, inherit from ApplicationException.

		
	1.Author
	2.License, Copyrights and Disclaimer
	3.Revision History
	4.Introduction
	5.Purpose of coding standards and best practices
	6.How to follow the standards across the team
	7.Naming Conventions and Standards
	8.Indentation and Spacing
	9.Good Programming practices
	10.Architecture
	11.ASP.NET
	12.Comments
	13.Exception Handling

